Teachers open the door but You must enter by yourself.
【事前学習】高校の行列、一次変換の基礎事項、ベーシックは 1-1〜1-3節、エキスパートは2-1〜2-2節を学んできてください。
$ \begin{eqnarray} \left\{ \begin{array}{l} x'=x+y\\ y'=y \end{array} \right. \end{eqnarray} $ $ \begin{eqnarray} \left\{ \begin{array}{l} x'=1x +1y +0\\ y'=0x +1y +0 \end{array} \right. \end{eqnarray} $
$\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}1 &1\\0 &1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}+\begin{pmatrix}0\\0\end{pmatrix}$
$\begin{pmatrix}x'\\y'\\1\end{pmatrix}=\begin{pmatrix}1 &1 &0\\0 &1 &0\\0 &0 &1\end{pmatrix}\begin{pmatrix}x\\y\\1\end{pmatrix}$
$ \begin{eqnarray} \left\{ \begin{array}{l} x'=\frac{1}{3}x\\ y'=\frac{1}{3}y-1 \end{array} \right. \end{eqnarray} $ $ \begin{eqnarray} \left\{ \begin{array}{l} x'=\frac{1}{3}x +0y +0\\ y'=0x +\frac{1}{3}y -1 \end{array} \right. \end{eqnarray} $
$\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}\frac{1}{3} &0\\0 &\frac{1}{3}\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}+\begin{pmatrix}0\\-1\end{pmatrix}$
$\begin{pmatrix}x'\\y'\\1\end{pmatrix}=\begin{pmatrix}\frac{1}{3} &0 &0\\0 &\frac{1}{3} &-1\\0 &0 &1\end{pmatrix}\begin{pmatrix}x\\y\\1\end{pmatrix}$
$\begin{pmatrix}x'\\y'\\1\end{pmatrix}=\begin{pmatrix}1 &0 &5\\0 &1 &0\\0 &0 &1\end{pmatrix}\begin{pmatrix}0 &-1 &0\\1 &0 &0\\0 &0 &1\end{pmatrix}\begin{pmatrix}x\\y\\1\end{pmatrix}$
$\begin{pmatrix}x'\\y'\\1\end{pmatrix}=\begin{pmatrix}0 &-1 &5\\1 &0 &0\\0 &0 &1\end{pmatrix}\begin{pmatrix}x\\y\\1\end{pmatrix}$
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x'=x+5\\
y'=y-4
\end{array}
\right.
\end{eqnarray}
$
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x'=1x +0y +5\\
y'=0x +1y -4
\end{array}
\right.
\end{eqnarray}
$
$\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}1 &0\\0 &1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}+\begin{pmatrix}5\\-4\end{pmatrix}$
$\begin{pmatrix}x'\\y'\\1\end{pmatrix}=\begin{pmatrix}1 &0 &5\\0 &1 &-4\\0 &0 &1\end{pmatrix}\begin{pmatrix}x\\y\\1\end{pmatrix}$
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x'=\frac{1}{2}x\\
y'=\frac{1}{2}y
\end{array}
\right.
\end{eqnarray}
$
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x'=\frac{1}{2}x +0y +0\\
y'= 0x +\frac{1}{2}y +0
\end{array}
\right.
\end{eqnarray}
$
$\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}\frac{1}{2} &0\\0 &\frac{1}{2}\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}+\begin{pmatrix}0\\0\end{pmatrix}$
$\begin{pmatrix}x'\\y'\\1\end{pmatrix}=\begin{pmatrix}\frac{1}{2} &0 &0\\0 &\frac{1}{2} &0\\0 &0 &1\end{pmatrix}\begin{pmatrix}x\\y\\1\end{pmatrix}$
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x'=x\\
y'=-y+6
\end{array}
\right.
\end{eqnarray}
$
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x'=1x +0y+0\\
y'=0x -1y+6
\end{array}
\right.
\end{eqnarray}
$
$\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}1 &0\\0 &-1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}+\begin{pmatrix}0\\6\end{pmatrix}$
$\begin{pmatrix}x'\\y'\\1\end{pmatrix}=\begin{pmatrix}1 &0 &0\\0 &-1 &6\\0 &0 &1\end{pmatrix}\begin{pmatrix}x\\y\\1\end{pmatrix}$
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x'=-x+6\\
y'=y
\end{array}
\right.
\end{eqnarray}
$
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x'=-1x +0y +6\\
y'= 0x +1y +0
\end{array}
\right.
\end{eqnarray}
$
$\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}-1 &0\\0 &1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}+\begin{pmatrix}6\\0\end{pmatrix}$
$\begin{pmatrix}x'\\y'\\1\end{pmatrix}=\begin{pmatrix}-1 &0 &6\\0 &1 &0\\0 &0 &1\end{pmatrix}\begin{pmatrix}x\\y\\1\end{pmatrix}$
【事後学習】公式問題集のエキスパート、ベーシック共に各回の第1問は座標変換の問題です。これらの問題を全て解けるようになってください。
This site is powered by